Найдите координаты точки симметричной точке А (6; -8): а) относительно начала координат; б) относительно оси Ох; в) относительно оси Оу; г) относительно прямой у = х; д) относительно прямой у = -х.
3) Диагональ квадрата равна произведению его стороны на , тогда:
ответ: .
4) По теореме Пифагора:
.
Площадь прямоугольного треугольника равна полупроизведению его катетов.
.
ответ: 6; 24.
5) Треугольник равнобедренный (по условию). В равнобедренном треугольнике высота является биссектрисой и медианой. Образовавшиеся два треугольника являются прямоугольными. По теореме Пифагора:
ответ: .
6) Катет, лежащий напротив угла с градусной величиной 30°, равен половине гипотенузы. Пусть - гипотенуза этого треугольника. По теореме Пифагора:
Больше сделать здесь ничего нельзя, поскольку длина гипотенузы нам не дана. Но если бы она была дана, то длину катета можно было бы вычислить через эту формулу.
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
1) По теореме Пифагора:
ответ: .
2) По теореме Пифагора:
.
ответ: 8.
3) Диагональ квадрата равна произведению его стороны на , тогда:
ответ: .
4) По теореме Пифагора:
.
Площадь прямоугольного треугольника равна полупроизведению его катетов.
.
ответ: 6; 24.
5) Треугольник равнобедренный (по условию). В равнобедренном треугольнике высота является биссектрисой и медианой. Образовавшиеся два треугольника являются прямоугольными. По теореме Пифагора:
ответ: .
6) Катет, лежащий напротив угла с градусной величиной 30°, равен половине гипотенузы. Пусть - гипотенуза этого треугольника. По теореме Пифагора:
Больше сделать здесь ничего нельзя, поскольку длина гипотенузы нам не дана. Но если бы она была дана, то длину катета можно было бы вычислить через эту формулу.