Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
Объяснение: обозначим трапецию АВСД, проведём от двух вершин верхнего основания две высоты и обозначим их ВН и СК. Они делят нижнее основание, так, что в середине нижнего основания получается отрезок равный верхнему основанию трапеции: НК=ВС=3см. Так как трапеция равнобедренная то отрезки АН=КД. Найдём эти отрезки:
АН=КД=(11-3)÷2=8÷2=4см. Рассмотрим полученный ∆АВН. Он прямоугольный где ВН и АН- катеты, а АВ- гипотенуза. Найдём высоту ВН по теореме Пифагора:.ВН²=АВ²-АН²=√(5²-4²)=
=√(25-16)=√9=3. Итак: высота ВН=3см. Площадь трапеции- это полупроизведение его оснований на высоту. Теперь найдём площадь треугольника, зная высоту и основания по формуле: S=(3+11)/2×h=
трапеция;
∠DAC = 63˚;
∠ACJ = 27˚;
D₂K = 10;
IJ = 12.
D₂К соединяет середины отрезков DE и AC.
IJ соединяет середины отрезков AD и EC.
Найти:(AC * DE) * 1/2 = ?
Решение:Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
(AC * DE) * 1/2 = (22 * 2) * 1/2 = 44 * 1/2 = 44/2 = 22.
ответ: (AC * DE) * 1/2 = 22.ответ: 21см²
Объяснение: обозначим трапецию АВСД, проведём от двух вершин верхнего основания две высоты и обозначим их ВН и СК. Они делят нижнее основание, так, что в середине нижнего основания получается отрезок равный верхнему основанию трапеции: НК=ВС=3см. Так как трапеция равнобедренная то отрезки АН=КД. Найдём эти отрезки:
АН=КД=(11-3)÷2=8÷2=4см. Рассмотрим полученный ∆АВН. Он прямоугольный где ВН и АН- катеты, а АВ- гипотенуза. Найдём высоту ВН по теореме Пифагора:.ВН²=АВ²-АН²=√(5²-4²)=
=√(25-16)=√9=3. Итак: высота ВН=3см. Площадь трапеции- это полупроизведение его оснований на высоту. Теперь найдём площадь треугольника, зная высоту и основания по формуле: S=(3+11)/2×h=
14/2×3=7×3=21см²