Диагонали прямоугольника равны и в точке пересечения делятся пополам ⇒АО=ОВ=ОС=OD. Эти половинки диагоналей - проекции ребер пирамиды. Следовательно, ребра пирамиды как наклонные с равными проекциями равны. SA=SD=SC=SB
Боковые грани – 2 пары равных равнобедренных треугольников с основаниями 12 см и 15 см.
Высота SМ в ∆ASB=√(SO*+OM*)=√(64+6,25)=0,5√281
Высота SН в ∆BSC=√(SO²+OH²)=√(64+36)=10 см
S ∆ASB=AM•SM=6•0,5√281=3√281 см²
S ∆ BSC=BH•SH=2,5•10=25 см²
S бок=2•3√281+2•25=(6√281+50) см² или ≈150,58 см²
S полн=60+60√281+50=(110+60√281) см² или ≈210,58 см²
Площадь боковой поверхности цилиндра равна периметру основания, умноженного на высоту, то есть S = 2*pi*R*H. R = AO = OB, H = OO1. S = 2*pi*R*OO1. Рассмотрим нижнее основание - окружность с центром О: дуга АВ равна бета, центральный угол равен радианной или градусной мере дуги, на которую опирается, а поскольку дуга АВ = бета, следовательно, центральный угол АОВ = бета. С этих пор обозначим угол альфа - α, бета - β. Из равнобедренного треугольника АОВ (поскольку АО = ВО - радиусы) <OAB = <OBA = (180-β)/2 = 90 - β/2. По теореме синусов: AB/sin(β) = R/sin(90-β/2), из таблицы формул приведения аргумента имеем: sin(pi/2-р) = cos(р), поскольку pi/2 = 90 градусов, а угол р = β/2, имеем: AB/sin(β) = R/cos(β/2), AB = (R*sin(β))/cos(β/2). Найдем теперь высоту OK: OK^2 = OB^2 - (BK)^2, OK^2 = OB^2 - (AB/2)^2, OK^2 = R^2 - ((R*sin(β))/2cos(β/2))^2. Рассмотрим треугольник ABO1: AO1 = BO1, следовательно треугольник ABO1 равнобедренный, а следовательно, <O1AB = < O1BA = (180 - α)/2 = 90 - α/2. Аналогично предыдущему, по теореме синусов: AB/sin(α) = AO1/sin(90-α/2), sin(90-α/2) = cos(α/2). Имеем: AO1 = (AB*cos(α/2))/sin(α) = (R*sin(β)*cos(α/2))/sin(α)*cos(β/2). Рассмотрим прямоугольный треугольник я это лучше распишу на картинке. И площадь боковой поверхности тоже.
Основание пирамиды прямоугольник.
Его площадь 12•5=60 см²
Диагонали прямоугольника равны и в точке пересечения делятся пополам ⇒АО=ОВ=ОС=OD. Эти половинки диагоналей - проекции ребер пирамиды. Следовательно, ребра пирамиды как наклонные с равными проекциями равны. SA=SD=SC=SB
Боковые грани – 2 пары равных равнобедренных треугольников с основаниями 12 см и 15 см.
Высота SМ в ∆ASB=√(SO*+OM*)=√(64+6,25)=0,5√281
Высота SН в ∆BSC=√(SO²+OH²)=√(64+36)=10 см
S ∆ASB=AM•SM=6•0,5√281=3√281 см²
S ∆ BSC=BH•SH=2,5•10=25 см²
S бок=2•3√281+2•25=(6√281+50) см² или ≈150,58 см²
S полн=60+60√281+50=(110+60√281) см² или ≈210,58 см²
Рассмотрим прямоугольный треугольник я это лучше распишу на картинке. И площадь боковой поверхности тоже.