2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Объяснение:
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Объяснение:
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5