Нам известно, что прямая y = kx + b проходит через точки с координатами А(- 1; 3) и В(2; - 1). Исходя из этого мы составим и решим систему линейных уравнений. 3 = - 1 * k + b; - 1 = 2k + b. Решать систему будем методом подстановки. Выразим из первого уравнения системы переменную b. b = 3 + k; 2k + b = - 1. Подставляем во второе уравнение вместо b выражение 3 + k и решаем полученное линейное уравнение. b = 3 + k; 2k + 3 + k = - 1. 3k = - 1 - 3; 3k = - 4; k = - 4/3 = - 1 1/3. Система: b = 3 + ( - 1 1/3) = 5/3 = 1 2/3; k = - 1 1/3. Запишем уравнение прямой проходящей через заданные точки: у = - 1 1/3х + 1 2/3. ответ: у = - 1 1/3х + 1 2/3.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Исходя из этого мы составим и решим систему линейных уравнений.
3 = - 1 * k + b;
- 1 = 2k + b.
Решать систему будем методом подстановки. Выразим из первого уравнения системы переменную b.
b = 3 + k;
2k + b = - 1.
Подставляем во второе уравнение вместо b выражение 3 + k и решаем полученное линейное уравнение.
b = 3 + k;
2k + 3 + k = - 1.
3k = - 1 - 3;
3k = - 4;
k = - 4/3 = - 1 1/3.
Система:
b = 3 + ( - 1 1/3) = 5/3 = 1 2/3;
k = - 1 1/3.
Запишем уравнение прямой проходящей через заданные точки:
у = - 1 1/3х + 1 2/3.
ответ: у = - 1 1/3х + 1 2/3.
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².