Вертикальные углы-это пары углов с общей вершиной,образованные при пересечении двух прямых так,что стороны одного угла являются продолжением сторон другого угла
По той же причине углы СОА и DOB равны между собой
Поэтому можно утверждать,что треугольники АОС и DOB равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны между собой
Ну а если треугол Ники равны между собой то и углы А и В тоже равны между собой
Судя по описанию, это - правильная треугольная пирамида.
Нам нужно найти боковое ребро пирамиды
(см. рисунок)
Для начала найдём расстояние от центра треугольника, до любой из его вершин с формулы для нахождения радиуса описанной около правильного треугольника окружности:
R=a/√3 , где a - сторона, равная по условию 6√3
Подставляем R=6√3/√3 = 6 - наш нижний катет прямоугольного треугольника KOB(к примеру)
Теперь нам известны два катета: KO или высота = 8,
ответ:Надо доказать,что треугольники СОА и DOB равны между собой
СО=ОD по условию задачи
Угол 1 равен углу 2,тоже по условию
Угол 1 равен внутреннему углу D,a угол 2 равен внутреннему углу С,как вертикальные.
Вертикальные углы-это пары углов с общей вершиной,образованные при пересечении двух прямых так,что стороны одного угла являются продолжением сторон другого угла
По той же причине углы СОА и DOB равны между собой
Поэтому можно утверждать,что треугольники АОС и DOB равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны между собой
Ну а если треугол Ники равны между собой то и углы А и В тоже равны между собой
Объяснение:
KB = 10
Объяснение:
Судя по описанию, это - правильная треугольная пирамида.
Нам нужно найти боковое ребро пирамиды
(см. рисунок)
Для начала найдём расстояние от центра треугольника, до любой из его вершин с формулы для нахождения радиуса описанной около правильного треугольника окружности:
R=a/√3 , где a - сторона, равная по условию 6√3
Подставляем R=6√3/√3 = 6 - наш нижний катет прямоугольного треугольника KOB(к примеру)
Теперь нам известны два катета: KO или высота = 8,
OB = 6
Найдём гипотенузу KB с теоремы Пифагора:
KB=√(6²+8²) = √(36+64) = √100 = 10