т. к. в осевом сечении его - прямоуг. равнобедр. тр-к, то высота конуса равна радиусу окр-ти в его осн-ии. Отсюда объем конуса 1/3 * Пи*радиус в кубе
работаем с осевым сечением
имеем прямоуг. равнобедр. тр-к, вписанный в окр-ть. Радиус этой окр-ти равен произ-ию сторон тр-ка, деленное на 4 его площади (это факт)
находим катет нашего прямоуг. тр-ка. (при высоте=радиусу) , наш катет равен радиусу, умноженному на квадратный корень из двух. Значит пл-дь нашего тр-ка 1/2 * катет в кв-те = радиус в кв-те.
теперь данные подставляем в формулу радиуса, делаем нехитрые махинации и получаем, что радиус сферы равен радиусу конуса
значит объем сферы равен 4/3 * Пи*радиус в кубе
ну а теперь находим отн-ие объема конуса к объему сферы и получаем 0,25 объема сферы
1) в ΔАСН:
СН=0,5 (катет, лежащий против угла в 30° равен половине гипотенузы)
По теореме Пифагора:
АН² = АС² - СН² = 1 - 0,25 = 0,75
АН = √0,75 = 0,5 √3
в ΔАВС:
cos A = AC / AB
AB = 1 ÷ (√3 / 2) = 2√3 / 3
BH = AB - AH = 2√3 / 3 - 0,5√3 = (4√3 - 3√3) / 6 = √3 / 6
ответ: √3 / 6
2) АВ = 2 ВС = 2 (катет, лежащий против угла в 30° равен половине гипотенузы)
∠В = 180° - ∠С - ∠А = 60°
cos B = BH / BC
BH = 1/2 × 1 = 1/2
AH = AB - BH = 2 - 1/2 = 1 1/2 = 1,5
ответ: 1,5
3) sin A = CH / AC
CH = sin A × AC = 3/5 × 4 = 12/5 = 2,4
ответ: 2,4
0.25
Объяснение:
т. к. в осевом сечении его - прямоуг. равнобедр. тр-к, то высота конуса равна радиусу окр-ти в его осн-ии. Отсюда объем конуса 1/3 * Пи*радиус в кубе
работаем с осевым сечением
имеем прямоуг. равнобедр. тр-к, вписанный в окр-ть. Радиус этой окр-ти равен произ-ию сторон тр-ка, деленное на 4 его площади (это факт)
находим катет нашего прямоуг. тр-ка. (при высоте=радиусу) , наш катет равен радиусу, умноженному на квадратный корень из двух. Значит пл-дь нашего тр-ка 1/2 * катет в кв-те = радиус в кв-те.
теперь данные подставляем в формулу радиуса, делаем нехитрые махинации и получаем, что радиус сферы равен радиусу конуса
значит объем сферы равен 4/3 * Пи*радиус в кубе
ну а теперь находим отн-ие объема конуса к объему сферы и получаем 0,25 объема сферы