V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
V=384 cm³
S=384 cm²
Объяснение:
1)Найдем объем правильной четырехугольной пирамиды:
V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).