В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География

Найдите площадь поверхности сферы,если площадь боковой поверхности вписанного в сферу конуса с основанием, с сечением сферы проходящим через её центр,равна 6√2

Показать ответ
Ответ:
Vexicy
Vexicy
22.07.2020 21:53
Если основание конуса совпадает с сечением сферы, то радиус  основания конуса R и радиус сферы совпадают.
Площадь боковой поверхности конуса равна:
Sбок к = πRL.
Образующая конуса в данном примере равна R √2.
По условию задачи 6√2 = πR²√2.
Отсюда находим радиус:
R = √(6/π).
Площадь поверхности сферы S = 4πR² = 4π*(6/π) =24 кв.ед.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота