Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Дано: АВСД - трап (уг А=уг В=90*) МР - ср линия трапеции АС - диагональ АС=СД=ДА=20 см МР-?
Решение (используя т Пифагора): 1) СН - высота трапеции, СН=АВ, СН - высота р/б тр АСД, ⇒СН- медиана ( по св-ву р/б тр-ка), 2) рассм тр НСД ( уг Н=90*), по т Пифагора СН=√(400-100)=√300=10√3 см (= АВ) 3) Рассм тр АВС ( уг В=90*), по т Пифагора ВС=√(400-300)=√100=10 см 4) МР= 1/2(ВС+АД) по определению ср линии трапеции МР= 1/2(20+10)=15 см
Решение (без т Пифагора и "корней") 1) СН - высота трапеции, СН=АВ, СН - высота р/б тр АСД, ⇒СН- медиана ( по св-ву р/б тр-ка), АН=1/2*АД; АН=10 см. 2) АВСН - прямоугольник по определению, ⇒АН=ВС, ⇒ВС=10 см 3) МР= 1/2(ВС+АД) по опр ср линии трапеции МР= 1/2(20+10)=1/2*30=15 см
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².
АВСД - трап (уг А=уг В=90*)
МР - ср линия трапеции
АС - диагональ
АС=СД=ДА=20 см
МР-?
Решение (используя т Пифагора):
1) СН - высота трапеции, СН=АВ, СН - высота р/б тр АСД, ⇒СН- медиана ( по св-ву р/б тр-ка),
2) рассм тр НСД ( уг Н=90*), по т Пифагора СН=√(400-100)=√300=10√3 см (= АВ)
3) Рассм тр АВС ( уг В=90*), по т Пифагора ВС=√(400-300)=√100=10 см
4) МР= 1/2(ВС+АД) по определению ср линии трапеции МР= 1/2(20+10)=15 см
Решение (без т Пифагора и "корней")
1) СН - высота трапеции, СН=АВ, СН - высота р/б тр АСД, ⇒СН- медиана ( по св-ву р/б тр-ка), АН=1/2*АД; АН=10 см.
2) АВСН - прямоугольник по определению, ⇒АН=ВС, ⇒ВС=10 см
3) МР= 1/2(ВС+АД) по опр ср линии трапеции
МР= 1/2(20+10)=1/2*30=15 см