Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Хорошо, с разъяснениями. Дано: <2=43°, а||б Найти:<1,<3,<4,<5,<6,<7,<8.
РЕШЕНИЕ: 1)Так как а||б, то <2+<5=180°-как внутренние односторонние при прямых а||б и секущей с. Если сумма их равна 180°, то <5= 180°-43°=137°. 2)Так как а||б, то <2=<6=43°, <3=<5=137°- как внутренние накрест лежащие при прямых а||б и секущей с. 3) Так как а||б, то <1=<5=137°, <2=<8=43°, <4=<6=43°, <3=<7=137° - как соответственные углы при прямых а||б и секущей с.
Дано:
<2=43°, а||б
Найти:<1,<3,<4,<5,<6,<7,<8.
РЕШЕНИЕ:
1)Так как а||б, то <2+<5=180°-как внутренние односторонние при прямых а||б и секущей с. Если сумма их равна 180°, то <5= 180°-43°=137°.
2)Так как а||б, то <2=<6=43°, <3=<5=137°- как внутренние накрест лежащие при прямых а||б и секущей с.
3) Так как а||б, то <1=<5=137°, <2=<8=43°, <4=<6=43°, <3=<7=137° - как соответственные углы при прямых а||б и секущей с.
ОТВЕТ: <1=137°, <3=137°, <4=43°, <5=137°, <6=43°, <7=137°, <8= 43°.