Найдите радиус меньшей окружности с центром в острого угла прямоугольного треугольника ABC, касающейся высоты СН, если LC = 90°, CH = 12 см и АВ = 25 см.
ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
38.4)Треугольник основания ВДД1 - прямоугольный. ДД1 как ребро равно 6, ВД - диагональ, равна 6√2. Тогда площадь основания So=(1/2)*6*6√2 = 18√2. Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2. Теперь находим объём: V = (1/3)*So*H = (1/3)*18√2*3√2 = 36. 38.5) Так как угол между высотой и апофемой равен 450, то треугольник РОН прямоугольный и равнобедренный, РО = НО = 4 см. Тогда РН2 = 2 * НО2 = 2 * 16 = 32. РН = 4 * √2 см. В основании пирамиды квадрат АВСД, тогда АО = СО = ВО = ДО, так как диагонали квадрата делятся в точке О пополам. АН = ВН, так как РН медиана треугольника АРВ, тогда ОН средняя линия треугольника АВС, тогда АВ = ВС = 2 * ОН = 2 * 4 = 8 см. Определим площадь основания. Sавсд = АВ2 = 82 = 64 см2. Определим площадь треугольника РАВ. Sарв = АВ * РН / 2 = 8 * 4 * √2 / 2 = 16 * √2 см2. Sбок = Sарв * 4 = 4 * 16 * √2 = 64 * √2 см2.
ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
ответ: ЕF= 12см
Объяснение:
ДД1 как ребро равно 6, ВД - диагональ, равна 6√2.
Тогда площадь основания So=(1/2)*6*6√2 = 18√2.
Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2.
Теперь находим объём:
V = (1/3)*So*H = (1/3)*18√2*3√2 = 36.
38.5) Так как угол между высотой и апофемой равен 450, то треугольник РОН прямоугольный и равнобедренный, РО = НО = 4 см. Тогда РН2 = 2 * НО2 = 2 * 16 = 32. РН = 4 * √2 см.
В основании пирамиды квадрат АВСД, тогда АО = СО = ВО = ДО, так как диагонали квадрата делятся в точке О пополам. АН = ВН, так как РН медиана треугольника АРВ, тогда ОН средняя линия треугольника АВС, тогда АВ = ВС = 2 * ОН = 2 * 4 = 8 см.
Определим площадь основания. Sавсд = АВ2 = 82 = 64 см2.
Определим площадь треугольника РАВ.
Sарв = АВ * РН / 2 = 8 * 4 * √2 / 2 = 16 * √2 см2.
Sбок = Sарв * 4 = 4 * 16 * √2 = 64 * √2 см2.