Центр окружности, описанной около прямоугольника, лежит в точке пересечения диагоналей.
Найдем диагональ АС по теореме Пифагора из прямоугольного треугольника АВС:
AC = √(AB² + BC²) = √(121 + 135) = √256 = 16.
Радиус окружности равен половине диагонали:
R = AC/2 = 16/2 = 8
Центр окружности, описанной около прямоугольника, лежит в точке пересечения диагоналей.
Найдем диагональ АС по теореме Пифагора из прямоугольного треугольника АВС:
AC = √(AB² + BC²) = √(121 + 135) = √256 = 16.
Радиус окружности равен половине диагонали:
R = AC/2 = 16/2 = 8