D = √(20² - 16²) = √(400 – 256) = √144 = 12
d = √(18² - 16²) = √(324 – 256) = √68
a = √(D +d)/2
a = √(12² + (√68)²)/2 = √(144 + 68)/2 =√212/2 = √53
ответ: √53 дм.
2) Основания – квадраты. D – диагональ большего основания, d – диагональ меньшего основания.
Диагональное сечение – трапеция высотой 4 и с основаниями D и d.
D = 8√2; d = 2√2
S = 1/2*(8√2 + 2√2)*4 = 1/2* 10√2* 4 = 20√2
ответ: 20√2 дм².
3) ABC – равносторонний треугольник, EO – радиус вписанной окружности, r = a√3/6.
EO = 4√3/6 = 2√3/3
DE – апофема, ∠EDO = 90 – 60 = 30°
⟹ DE = 2EO = 4√3/3
DO – высота пирамиды, DO = √(DE² - EO²)
DO = √((4√3/3)² - (2√3/3)²) = √(16*3/9 – 4*3/9) = √(48/9 – 12/9) = √(36/9) = √4 = 2
V = ha²/4√3
V = 2*4²/4√3 = 2*16/4√3 = 8/√3 = 8√3/3
Sосн. = √3/4 * a²; Sбок. = 1/2PL
S осн. = 4²*√3/4 = 16√3/4 = 4√3; Sбок. = 1/2*16*4√3/3 = 32√3/3
S = 4√3 + 32√3/3 = 12√3/3 + 32√3/3 = 48√3/3 = 16√3
ответ: V = 8√3/3 см³, S = 16√3 см².
∠oxz = ∠oyz = 90°
сумма внутренних углов выпуклого четырёхугольника равна 360°
∠xoz = 360 - 150 - 90 - 90 = 30°
По т. косинусов
xy² = ox² + oy² - 2*ox*oy*cos(∠xoz)
xy² = 3² + 3² - 2*3*3*cos(30°)
xy² = 18 - 2*9*√3/2
xy² = 18 - 9*√3 = 9(2-√3)
xy = 3√(2-√3)
некрасиво, корень под корнем, можно немного улучшить
2-√3 = (a√3 + b)²
2-√3 = a²*3 + 2ab√3 + b²
слагаемые с корнем приравняем
-√3 = 2ab√3
2ab = -1
ab = -1/2
b = -1/(2a)
а теперь слагаемые без корня
2 = 3a² +b²
2 = 3a² +(-1/(2a))²
2 = 3a² +1/(2a)²
2*4a² = 3a²*4a² + 1
12a⁴ - 8a² + 1 = 0
дискриминант
D = 8² - 4*12 = 64-48 = 16 = 4²
Корни
(a²)₁₂ = (8-4)/(2*12) = 4/24 = 1/6
a₁ = -1/√6
b₁ = -1/(2a₁) = √6/2 = √(3/2)
2-√3 = (a₁√3 + b₁)² = (-1/√2 + √(3/2))² = (√3-1)²/2
√(2-√3) = (√3 - 1)/√2
Уже лучше
xy = 3√(2-√3) = 3(√3 - 1)/√2 = 3√2(√3 - 1)/2 = 3(√6-√2)/2
D = √(20² - 16²) = √(400 – 256) = √144 = 12
d = √(18² - 16²) = √(324 – 256) = √68
a = √(D +d)/2
a = √(12² + (√68)²)/2 = √(144 + 68)/2 =√212/2 = √53
ответ: √53 дм.
2) Основания – квадраты. D – диагональ большего основания, d – диагональ меньшего основания.
Диагональное сечение – трапеция высотой 4 и с основаниями D и d.
D = 8√2; d = 2√2
S = 1/2*(8√2 + 2√2)*4 = 1/2* 10√2* 4 = 20√2
ответ: 20√2 дм².
3) ABC – равносторонний треугольник, EO – радиус вписанной окружности, r = a√3/6.
EO = 4√3/6 = 2√3/3
DE – апофема, ∠EDO = 90 – 60 = 30°
⟹ DE = 2EO = 4√3/3
DO – высота пирамиды, DO = √(DE² - EO²)
DO = √((4√3/3)² - (2√3/3)²) = √(16*3/9 – 4*3/9) = √(48/9 – 12/9) = √(36/9) = √4 = 2
V = ha²/4√3
V = 2*4²/4√3 = 2*16/4√3 = 8/√3 = 8√3/3
Sосн. = √3/4 * a²; Sбок. = 1/2PL
S осн. = 4²*√3/4 = 16√3/4 = 4√3; Sбок. = 1/2*16*4√3/3 = 32√3/3
S = 4√3 + 32√3/3 = 12√3/3 + 32√3/3 = 48√3/3 = 16√3
ответ: V = 8√3/3 см³, S = 16√3 см².