найдите углы выпуклого девятиугольника если их градусные меры относятся как 5: 6: 7: 8: 8: 9: 9: 9/знайдіть кути опуклого дев'ятикутника якщо їх градусні міри відносяться як: 5:6:7:8:8:9:9:9
1) Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС) Углы АСТ и ТСД равны(по условию) Они по 30 градусов Рассмотрим треугольник СТД. Угол С = 30 градусов, угол Д = 90 градусов А катет, лежащий против угла 30 градусов равен половине гипотенузы СТ = 6*2 = 12 По теореме пифагора СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3 А периметр равен: 18*2 + 6 √3 * 2 =36 + 12√3 Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне
Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС)
Углы АСТ и ТСД равны(по условию)
Они по 30 градусов
Рассмотрим треугольник СТД.
Угол С = 30 градусов, угол Д = 90 градусов
А катет, лежащий против угла 30 градусов равен половине гипотенузы
СТ = 6*2 = 12
По теореме пифагора
СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3
А периметр равен:
18*2 + 6 √3 * 2 =36 + 12√3
Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне
Объем призмы находят произведением площади её основания на высоту.
V=S•H
Высоту призмы найдем из треугольника ОСС1, где ∠ С1ОС=45º, а ∠С1СО=90º (т.к. призма прямая, все её ребра перпендикулярны основанию)⇒
∆ ОСС1 - равнобедренный и Н=СС1=ОС.
О- центр окружности, ОС=R, ⇒ высота СС1 призмы равна радиусу описанной вокруг основания окружности.
Формула:
R=abc:4S, где a,b и c - стороны треугольника АВС, S его площадь.
S ABC=CH•AH
СH=8 ( т.к. тр-к АВС - египетский. Можно и по т.Пифагора найти)
S ∆ ABC=8•6=48
R=10•10•12:4•48=6,25⇒
H=CC1=6,25
V=48•6,25=300 (ед. объема)