Прямая ав ║ пл. scd, т.к. ав║cd. поэтому расстояние oт т. а до плоскости scd равно расстоянию от любой точки прямой ав до этой плоскости, в том числе и от точки м - середины отрезка ав, до плоскоти scd. δscd: проведём медиану sn , sn также высота δscd, sn⊥cd. δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd. mh - высота δsmn , mh⊥sn . cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒ cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn . mh - перпендикуляр к плоскости scd. значит, mh - расстояние от ав до пл. scd . точка о - центр основания авсd. δaos - прямоугольный:
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
δscd: проведём медиану sn , sn также высота δscd, sn⊥cd.
δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd.
mh - высота δsmn , mh⊥sn .
cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒
cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn .
mh - перпендикуляр к плоскости scd.
значит, mh - расстояние от ав до пл. scd .
точка о - центр основания авсd.
δaos - прямоугольный: