Сказка о треугольниках Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры Меня знает каждый школьник, И зовусь я треугольник. У меня вершины три, Также три и стороны. Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным. Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить. Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам! Все также скачет по углам Веселая, смешная крыса. Мы делим радость пополам, А делит угол биссектриса. Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы: -если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны; - если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны; - если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны. Много времени проводят вместе друзья и встречают новых измени немного текст под себя
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры
Меня знает каждый школьник,
И зовусь я треугольник.
У меня вершины три,
Также три и стороны.
Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным.
Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить.
Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам!
Все также скачет по углам
Веселая, смешная крыса.
Мы делим радость пополам,
А делит угол биссектриса.
Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы:
-если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны;
- если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны;
- если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны.
Много времени проводят вместе друзья и встречают новых
измени немного текст под себя
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см