1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
Плоскость прямоугольника и плоскость АВК пересекаются по прямой АВ. Прямая СД принадлежит плоскости прямоугольника, но не пренадлежит плоскости АВК. Тут два варианта: либо она параллельна плоскости АВК, либо пепесекает ее. Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда:
Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.