Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Условие задачи некорректно составлено.
Объяснение:
Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².