Найти место центров окружностей, касающихся оси абсцисс и проходящих через точку p(3, -2).
параллельным переносом осей координат полученное уравнение к каноническому виду и построить обе системы координат и найденное место точек.
вообще не допираю как это найти, особенно первую часть, перенос то вроде как понимаю как
школу уже давно закончил, учусь на заочке, а объяснений даже близко как такое делать в методичке нету =(
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
Если один угол между диагоналями равен 120° , то второй, меньший, равен 60° как смежный с ним.
Треугольник, образованный двумя половинками диагоналей и меньшей стороной прямоугольника - равносторонний, так как он равнобедренный: две его стороны равны как половинки равных диагоналей, а угол при вершине равен 60° .
Следовательно, каждая половина диагонали равна 10 (меньшей стороное прямоугольника), а вся диагональ вдвое больше и равна 2*10=20.
Шар описан около пирамиды, значит основание пирамиды вписано в круг - сечение шара, Н - центр основания и центр сечения, НС - радиус сечения.
Радиус окружности, описанной около правильного треугольника:
r = a√3/3, где а - сторона треугольника.
CH = AB√3/3 = 9√3 / 3 = 3√3 см.
Центр шара - точка О - лежит на пересечении высоты пирамиды и серединного перпендикуляра к ее ребру.
SO = OC = R - радиус шара.
OH = SH - SO = 10 - R
ΔOHC: ∠OHC = 90°, по теореме Пифагора
CO² = OH²+ CH²
R² = (10 - R)² + 27
R² = 100 - 20R + R² + 27
20R = 127
R = 6,35 см