В угол можно вписать окружность. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Центр вписанной в угол ВСД окружности лежит на биссектрисе СР Центр вписанной в угол СДА окружности лежит на биссектрисе ДР Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности. Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности. Вариант решения: Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно. ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной. Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒ КО=ОМ Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒ НО=ОМ КО=ОМ, НО=ОМ⇒ КО=ОН=ОМ, что и требовалось доказать.
Значит, CK = АМ = 5х , ВК = ВМ = 8х
ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности
AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20
Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24
S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240
ОТВЕТ: S abc = 240
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Центр вписанной в угол ВСД окружности лежит на биссектрисе СР
Центр вписанной в угол СДА окружности лежит на биссектрисе ДР
Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности.
Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности.
Вариант решения:
Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно.
ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной.
Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒
КО=ОМ
Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒
НО=ОМ
КО=ОМ, НО=ОМ⇒
КО=ОН=ОМ, что и требовалось доказать.