Треугольник ABC — равнобедренный, поэтому ∠BAC=∠CBA=45∘. В прямоугольном треугольнике MTA угол A равен 45∘, значит, угол M тоже равен 45∘ и треугольник равнобедренный. Следовательно, AT=MT=3,5. Проведём медиану CK в △ABC. В силу того, что треугольник равнобедренный, CK является и высотой. Отрезки CK и MT параллельны, так как оба перпендикулярны AB. Отрезок MT является средней линией △ACK, так как он параллелен CK и проходит через середину AC. Тогда AK=2AT=7. Так как CK — медиана, AB=2AK=14.
x²+ (y –65/18)² = 29/1
Объяснение:
Центр окружности имеет координаты О (0;уо) .
Точки, принадлежащие окружности имеют координаты (4;0) и (0;9). Их координаты удовлетворяют уравнению окружности:
x²+ (y – у₀)² = R² , где (0;у₀)-координаты центра .
х²+(0- у₀)²=R² , или 16 +у₀²=R²
х²+ (y- у₀)²=0²+(9- у₀)² или 81-18у₀+ у₀²= R² Вычтем из 1 уравнения 2. Получим :
16-81+18 у₀=0
18 у₀=65
у₀=3,6. Центр имеет координаты О (0; 3,6).
Найдем R²=(4²+(0-3,6)² )= 29. R=5,4
x² + (y – 21,7)² =29
14
Объяснение:
Треугольник ABC — равнобедренный, поэтому ∠BAC=∠CBA=45∘. В прямоугольном треугольнике MTA угол A равен 45∘, значит, угол M тоже равен 45∘ и треугольник равнобедренный. Следовательно, AT=MT=3,5. Проведём медиану CK в △ABC. В силу того, что треугольник равнобедренный, CK является и высотой. Отрезки CK и MT параллельны, так как оба перпендикулярны AB. Отрезок MT является средней линией △ACK, так как он параллелен CK и проходит через середину AC. Тогда AK=2AT=7. Так как CK — медиана, AB=2AK=14.