В равнобокой трапеции АВСD биссектриса угла А , делит сторону ВС на отрезки ВК и КС . Найдите периметр трапеции, если известно, что АВ=8см и ВК в 2 раза больше чем КС, а верхнее основание меньше нижнего на 6 см.
Объяснение:
ABCD -трапеция , АВ=ВС=8 см . Т.к. АК-биссектриса ⇒∠ВАК=∠DAК и ∠ВАК=∠ВКА как накрест лежащие при ВС||AD, АК-секущая.Поэтому ΔАВК-равнобедренный ( по признаку равнобедренного треугольника) ⇒АВ=ВК=8 (см).
Соединим точку Е с точкой К. ВК является проекцией наклонной ЕК на плоскость АВСD. Поскольку ВК - высота ромба. то ВК ⊥ AD.
По теореме о трёх перпендикулярах: если AD ⊥ BK (проекции наклонной ЕК), то AD⊥ ЕК. Следовательно, ∠ЕКВ = α является линейным углом, служащим мерой двугранного угла между плоскостями ADE и АВСD.
В равнобокой трапеции АВСD биссектриса угла А , делит сторону ВС на отрезки ВК и КС . Найдите периметр трапеции, если известно, что АВ=8см и ВК в 2 раза больше чем КС, а верхнее основание меньше нижнего на 6 см.
Объяснение:
ABCD -трапеция , АВ=ВС=8 см . Т.к. АК-биссектриса ⇒∠ВАК=∠DAК и ∠ВАК=∠ВКА как накрест лежащие при ВС||AD, АК-секущая.Поэтому ΔАВК-равнобедренный ( по признаку равнобедренного треугольника) ⇒АВ=ВК=8 (см).
Тогда КС=8/2=4 ( см) , ВС=8+4=12 (см)
Поэтому AD=12+6=18 (см).
Р=2*8+12+18=46 (см)
α = 45°
Объяснение:
Смотри прикреплённый рисунок.
Из вершины В ромба проводим высоту ВК.
ВК = а · sin A = a · sin 60° = 0.5a√3.
Соединим точку Е с точкой К. ВК является проекцией наклонной ЕК на плоскость АВСD. Поскольку ВК - высота ромба. то ВК ⊥ AD.
По теореме о трёх перпендикулярах: если AD ⊥ BK (проекции наклонной ЕК), то AD⊥ ЕК. Следовательно, ∠ЕКВ = α является линейным углом, служащим мерой двугранного угла между плоскостями ADE и АВСD.
Найдём этот угол.
tg α = BE : BK = 0.5a√3 : 0.5a√3 = 1.
Следовательно, ∠α = 45°