В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ПоляКетчуп
ПоляКетчуп
24.05.2020 19:18 •  Геометрия

Найти радиус окружности вписанной в прямоугольный треугольник с гипотенузой 13 см, если длина биссектрисы, проведенной из вершины прямого угла, равна 60√2/17 см

Показать ответ
Ответ:
zebra60
zebra60
22.02.2021 23:35
      В прямоугольном треугольнике больший угол равен 90°. Гипотенуза       лежит против угла 90°.  Против большего угла лежит большая                 сторона,
• Гипотенуза прямоугольного треугольника больше каждого из катетов.   a < c > b
 
• Сумма острых углов прямоугольного треугольника 180°-90°=90°

• Две высоты прямоугольного треугольника совпадают с его катетами.

• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники. 

• Если катет, лежит против угла 30°, он равен половине гипотенузы.

• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности. 

• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.

• В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора):
                    c²=a²+b²

• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)

• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Все свойства прямоугольных треугольников
0,0(0 оценок)
Ответ:
kuyavchr
kuyavchr
09.10.2021 16:29
Что-то не так. Во-первых, опечатка - не призма, а пирамида.
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
x = \frac{a}{ \sqrt{2}/tg \alpha + \sqrt{2} } = \frac{a*tg \alpha }{ \sqrt{2}*(tg \alpha +1) }
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота