В равнобедренном треугольнике с периметром 32 см длина отрезка, соединяющая середины боковых сторон, равна 6 см. Найдите диаметр окружности, вписанной в этот треугольник
Объяснение:
Т.к. средняя линия 6 см , то основание 12 см , по т. о средней линии.
Найдите координаты точек пересечения графиков функций
Если точка с координатами (х;у) точка пересечения то
1)у=-6х+1 и у=5х+9
-6x+1=5x+9
-6x-5x=9-1
-11x= 8
x= - 8/11
тогда у= 5*(-8/11)+9= -40/11 + 99/11=59/11=5⁴/₁₁
точка пересечения (-⁸/₁₁; 5 ⁴/₁₁)
2) у=21-9х и у=-2,5х+8
21-9x= -2.5x+8
-9x+2.5x=8-21
-6.5x=-13
x= -13/ -6.5
x=2
тогда у=21-9*2=21-18=3
точка перескечения (2;3)
3) у=16,2+8х и у=-0,8х+7,4
16,2+8х= -0,8х+7,4
16,2-7,4= -0,8х-8х
8,8= -8,8х
х= -1
тогда у= 16,2+8*(-1)=16,2-8=8,2
точка пересечения (-1; 8,2)
5) у=1-3х и у=-х-1
1-3х= -х-1
-3х+х=-1-1
-2х=-2
х=1
тогда у=1-3*1=1-3=-2
точка пересечения (1; -2)
6) у=1+7х и у=6,5х
1+7х=6,5х
1=6,5х-7х
1=-0,5х
х= -2
тогда у= 1+7*(-2)=1-14=-13
точка пересечения (-2; -13)
В равнобедренном треугольнике с периметром 32 см длина отрезка, соединяющая середины боковых сторон, равна 6 см. Найдите диаметр окружности, вписанной в этот треугольник
Объяснение:
Т.к. средняя линия 6 см , то основание 12 см , по т. о средней линии.
Тогда равные боковые стороны (32-12):2=10 ( см).
d=2r , а радиус можно найти из формулы S=1/2*P*r.
Площадь треугольника можно найти по ф. Герона ,
р=32:2=16 , р-а=16-10=6, р-в=16-10=6 , р-с=16-12=4,
S=√( 16 *6*6*4)=4*6*2=48 (см²)
S=1/2*P*r , 48=1/2*32*r , r=3 см ⇒ d=6 см
Формула Герона S= √p (p−a) (p−b) (p−c) , полупериметр p= 1 ÷2 *(a+b+c).