В равнобедренном треугольнике высота к основанию является также биссектрисой и медианой.
BH - высота/биссектриса/медиана
AC=4x, AB=3x
AH =AC/2 =2x
BH =√(AB^2 -AH^2) =√(9-4) x =√5 x (т Пифагора)
Центр вписанной окружности - пересечение биссектрис.
AI - биссектриса
По теореме о биссектрисе
BI/IH =AB/AH =3/2 => IH =2/5 BH =8 (см)
Центр описанной окружности - пересечение серединных перпендикуляров.
MO - серединный перпендикуляр к AB
AB/BH =3/√5 => AB =3/√5 BH =12√5
△OBM~△ABH (прямоугольные с общим углом)
OB/AB =BM/BH => OB/12√5 =6√5/20 => OB =18 (см)
Или
cosA =2/3
sinC =sinA =√(1 -cosA^2) =√5/3
AB =BH/sinA
AB/sinC =2R (т синусов) => R =BH/2sinA^2 =20/2 :(5/9) =18 (см)
Пусть начало координат в точке А. Тогда А(0;0)
И сторона AB расположена по направлению оси ОХ. Тогда, так как АВ=14, то B(14;0).
Высота СО делит АВ пополам. Значит, С(7;0). И, так как длина этой высоты 20, то С(7;20).
Точка N - Середина стороны СВ. Чтобы найти координаты середины, нужно вычислить среднее арифметическое координат концов отрезка.
N((14+7)/2;(20+0)/2)=N(10.5;10).
Аналогично считаем M:
M((7+0)/2;(20+0)/2)=M(3.5;2.).
Чтобы найти длины медиан, сначала найдём координаты векторов. И, так как AC=BC, то достаточно посчитать только AN.
Чтобы найти координаты вектора, надо от координат конца отнять координаты начала:
AN(10.5-0;10-0)=AN(10.5;10)
Чтобы найти длину вектора, надо посчитать корень из суммы квадратов координат(теорема Пифагора)
|AN|=√(10,5^2+10^2)=√210.25=14.5
Объяснение:
В равнобедренном треугольнике высота к основанию является также биссектрисой и медианой.
BH - высота/биссектриса/медиана
AC=4x, AB=3x
AH =AC/2 =2x
BH =√(AB^2 -AH^2) =√(9-4) x =√5 x (т Пифагора)
Центр вписанной окружности - пересечение биссектрис.
AI - биссектриса
По теореме о биссектрисе
BI/IH =AB/AH =3/2 => IH =2/5 BH =8 (см)
Центр описанной окружности - пересечение серединных перпендикуляров.
MO - серединный перпендикуляр к AB
AB/BH =3/√5 => AB =3/√5 BH =12√5
△OBM~△ABH (прямоугольные с общим углом)
OB/AB =BM/BH => OB/12√5 =6√5/20 => OB =18 (см)
Или
cosA =2/3
sinC =sinA =√(1 -cosA^2) =√5/3
AB =BH/sinA
AB/sinC =2R (т синусов) => R =BH/2sinA^2 =20/2 :(5/9) =18 (см)
Пусть начало координат в точке А. Тогда А(0;0)
И сторона AB расположена по направлению оси ОХ. Тогда, так как АВ=14, то B(14;0).
Высота СО делит АВ пополам. Значит, С(7;0). И, так как длина этой высоты 20, то С(7;20).
Точка N - Середина стороны СВ. Чтобы найти координаты середины, нужно вычислить среднее арифметическое координат концов отрезка.
N((14+7)/2;(20+0)/2)=N(10.5;10).
Аналогично считаем M:
M((7+0)/2;(20+0)/2)=M(3.5;2.).
Чтобы найти длины медиан, сначала найдём координаты векторов. И, так как AC=BC, то достаточно посчитать только AN.
Чтобы найти координаты вектора, надо от координат конца отнять координаты начала:
AN(10.5-0;10-0)=AN(10.5;10)
Чтобы найти длину вектора, надо посчитать корень из суммы квадратов координат(теорема Пифагора)
|AN|=√(10,5^2+10^2)=√210.25=14.5
Объяснение: