Пусть наименьший из углов равен х, а величина возрастания каждого последующего угла - у. х+х+у+х+2у=180 ⇒ 3х+3у=180 ⇒ у=60-х. Запомним это.
Теперь тем же запишем сумму всех шести углов, сумма которых будет равна 180+360=540°. х+х+у+х+2у+х+3у+х+4у+х+5у=540, 6х+15у=540, 6х+15(60-х)=540, 6х+900-15х=540, 9х=360, х=40, у=60-40=20.
Последовательный ряд всех углов: 40°, 60°, 80°, 100°, 120°, 140°. Сумма внутренних углов: 40+60+80=180°, Сумма внешних углов: 100+120+140=360°. (этот абзац можно не писать, просто проверка).
АВСДЕФ - шестиугольник, АВ=10, ВС=СД=ДЕ=ЕФ=АФ. В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2. ∠ВОК=45°, ∠АОВ=90°. ∠ОАВ=∠ОВА=45°. В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°. Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них. ∠ВСД=63+63=126°. В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ. ∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.
х+х+у+х+2у=180 ⇒ 3х+3у=180 ⇒ у=60-х. Запомним это.
Теперь тем же запишем сумму всех шести углов, сумма которых будет равна 180+360=540°.
х+х+у+х+2у+х+3у+х+4у+х+5у=540,
6х+15у=540,
6х+15(60-х)=540,
6х+900-15х=540,
9х=360,
х=40,
у=60-40=20.
Последовательный ряд всех углов: 40°, 60°, 80°, 100°, 120°, 140°.
Сумма внутренних углов: 40+60+80=180°,
Сумма внешних углов: 100+120+140=360°. (этот абзац можно не писать, просто проверка).
ответ: меньший из внутренних углов равен 40°.
В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2.
∠ВОК=45°, ∠АОВ=90°.
∠ОАВ=∠ОВА=45°.
В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°.
Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них.
∠ВСД=63+63=126°.
В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ.
∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.