1. конус — тело, полученное объединением всех лучей, исходящих из вершины конуса, и проходящих через плоскую поверхность.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
Чтобы узнать принадлежит точка окружности или нет, нужно подставить координаты точки в уравнение. А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности 2) подставим координаты центра и значение радиуса в уравнение окружности (х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности. А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности
В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности
С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности
Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности
2) подставим координаты центра и значение радиуса в уравнение окружности
(х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности.
А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности