Угол САМ=58°
Угол АМС=58°
Угол АСМ=64°
Угол ВМК=58°
Угол МВК=64°
Угол МКВ=58°
Объяснение:
В связи с тем, что сторона АС равна стороне СМ мы понимаем, что треугольник АСМ равнобедренный.
В равнобедренном треугольнике углы при основании равны, а сумма углов треугольников равна 180°
В данном треугольнике углы при основании это угол САМ и угол АМС. Если САМ равен 58°, следовательно и угол АМС будет равен 58°
Углом при вершине в данном треуголнике является угол АСМ, он равен разности суммы углов и суммы двух других сторон, мы получаем:
180-(58+58)=64°
Перемещаемся на треугольник ВМК . Здесь, угол ВМК равен углу АМС , так как они вертикальные.
Отсюда мы получаем , что треугольники АМС и ВМК конгруэнтны.
Следовательно, угол МВК равен углу АСМ(64°), а угол МКВ равен углу САМ(58°).
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².
Угол САМ=58°
Угол АМС=58°
Угол АСМ=64°
Угол ВМК=58°
Угол МВК=64°
Угол МКВ=58°
Объяснение:
В связи с тем, что сторона АС равна стороне СМ мы понимаем, что треугольник АСМ равнобедренный.
В равнобедренном треугольнике углы при основании равны, а сумма углов треугольников равна 180°
В данном треугольнике углы при основании это угол САМ и угол АМС. Если САМ равен 58°, следовательно и угол АМС будет равен 58°
Углом при вершине в данном треуголнике является угол АСМ, он равен разности суммы углов и суммы двух других сторон, мы получаем:
180-(58+58)=64°
Перемещаемся на треугольник ВМК . Здесь, угол ВМК равен углу АМС , так как они вертикальные.
Отсюда мы получаем , что треугольники АМС и ВМК конгруэнтны.
Следовательно, угол МВК равен углу АСМ(64°), а угол МКВ равен углу САМ(58°).
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².