В четырехугольнике АВСD угол BAC равен углу ACD, а это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, сторона АВ параллельна стороне CD. Тогда четырехугольник АВСD - параллелограмм по признаку: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм". В параллелограмме противоположные стороны равны. Тогда АВ=4см (дано), АС=7см (дано) и ВС=6см (так как ВС=AD как противоположные стороны параллелограмма). Периметр треугольника АВС равен АВ+ВС+AС. Или Рabc=4+6+7=17см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
В четырехугольнике АВСD угол BAC равен углу ACD, а это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, сторона АВ параллельна стороне CD. Тогда четырехугольник АВСD - параллелограмм по признаку: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм". В параллелограмме противоположные стороны равны. Тогда АВ=4см (дано), АС=7см (дано) и ВС=6см (так как ВС=AD как противоположные стороны параллелограмма). Периметр треугольника АВС равен АВ+ВС+AС. Или Рabc=4+6+7=17см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.