Рассмотрим ΔABD и ΔCBD. ΔABD = ΔCBD по первому признаку равенства треугольников (Признак: Если две стороны и угол между ними одного треугольника соответственно равены двум сторонам и углу между ними другого треугольника, то такие треугольники равны):
1. AD=CD (по рис.)
2. ∠ADB = ∠CDB (по рис.)
3. BD - общая.
Так как треугольники равны, то соответственно и углы и стороны у них равны. ⇒ AB=BC. Рассмотрим ΔABC в котором AB=BC, так как две стороны равны делаем вывод, что треугольник равнобедренный.
Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
ΔABC - равнобедренный
Объяснение:
Рассмотрим ΔABD и ΔCBD. ΔABD = ΔCBD по первому признаку равенства треугольников (Признак: Если две стороны и угол между ними одного треугольника соответственно равены двум сторонам и углу между ними другого треугольника, то такие треугольники равны):
1. AD=CD (по рис.)
2. ∠ADB = ∠CDB (по рис.)
3. BD - общая.
Так как треугольники равны, то соответственно и углы и стороны у них равны. ⇒ AB=BC. Рассмотрим ΔABC в котором AB=BC, так как две стороны равны делаем вывод, что треугольник равнобедренный.
Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
ответ: S=65a²/121.