ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Высота правильной треугольной пирамиды равна 4√3, а боковая грань образует с основанием пирамиды угол 60° .Найдите площадь боковой поверхности. ---------------- Площадь боковой поверхности пирамиды равна сумме площадей ее граней или половине произведения апофемы на периметр основания пирамиды. Апофема МН равна частному от деления высоты пирамиды на синус угла МНО. МН=((4√3):(√3:2)=8 НО - треть высоты основания пирамиды, т.к. равен радиусу вписанной в правильный треугольник окружности, т.е. одной трети высоты этого треугольника. ОН противолежит углу НМО= 30° ⇒ равна половине МН. ОН=МН:2=4 Вся высота ВН равна 4×3=12 Сторона основания АВС равна НВ :sin 60°=8√3 Площадь боковой поверхности пирамиды S бок=Р АВС×МН:2= 24√3×8:2=96√3 единиц площади
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
----------------
Площадь боковой поверхности пирамиды равна сумме площадей ее граней или половине произведения апофемы на периметр основания пирамиды.
Апофема МН равна частному от деления высоты пирамиды на синус угла МНО.
МН=((4√3):(√3:2)=8
НО - треть высоты основания пирамиды, т.к. равен радиусу вписанной в правильный треугольник окружности, т.е. одной трети высоты этого треугольника.
ОН противолежит углу НМО= 30° ⇒ равна половине МН.
ОН=МН:2=4
Вся высота ВН равна 4×3=12
Сторона основания АВС равна НВ :sin 60°=8√3
Площадь боковой поверхности пирамиды
S бок=Р АВС×МН:2= 24√3×8:2=96√3 единиц площади