Нур султан каласындагы бейбитшилик пен келисим сарайы дурыс тортбурышты пишиндес болып табылады. Онын биктиги мен табан кабыргасы 62м ге тен. Пирамиданын буйир бетинин ауданын табындар
Прямая а параллельна прямой l, прямая l - лежит в плоскостях α и β. Значит прямая а
либо лежит в одной из плоскостей (так как параллельные прямые - это прямые, которые лежат в одной плоскости и не пересекаются), либо параллельна этим плоскостям (так как по признаку параллельности прямой и плоскости: если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна плоскости).
Возможные варианты расположения прямой а относительно плоскостей α и β на рисунке 1.
а) Могут ли прямые а и b лежать в одной плоскости?
Нет. По определению, скрещивающиеся прямые - это прямые, не лежащие в одной плоскости.
б) Могут ли прямые а и b лежать в разных плоскостях?
Да. Вариант такого расположения прямых на рисунке 2.
в) Могут ли прямые а и b пересекать плоскости α и β?
Нет, так как прямая а либо лежит в одной из плоскостей, либо параллельна им, т.е. не пересекает.
а) Нет.
б) Да.
в) Нет.
Объяснение:
Прямая а параллельна прямой l, прямая l - лежит в плоскостях α и β. Значит прямая а
либо лежит в одной из плоскостей (так как параллельные прямые - это прямые, которые лежат в одной плоскости и не пересекаются), либо параллельна этим плоскостям (так как по признаку параллельности прямой и плоскости: если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна плоскости).Возможные варианты расположения прямой а относительно плоскостей α и β на рисунке 1.
а) Могут ли прямые а и b лежать в одной плоскости?
Нет. По определению, скрещивающиеся прямые - это прямые, не лежащие в одной плоскости.
б) Могут ли прямые а и b лежать в разных плоскостях?
Да. Вариант такого расположения прямых на рисунке 2.
в) Могут ли прямые а и b пересекать плоскости α и β?
Нет, так как прямая а либо лежит в одной из плоскостей, либо параллельна им, т.е. не пересекает.
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²