Нужна Самостоятельная работа по геометрии по теме "Простейшие задачи в координатах" (заранее за Дано А(-10;-5) , B(-2;6), С(0;9)
Найти:
а) координаты вектора BC
б) длину вектора AB
в) координаты середины отрезка АС
г) периметр треугольника ABC
д) длину медианы BM
Объяснение:
Площадь трапеции равна произведению полусуммы ее оснований ( средней линии) на высоту.
S= ВН*(АД+ВС):2
Сделаем рисунок к задаче.
Обозначим вершины трапеции АВСД.
Меньшее основание обозначим ВС, большее АД
Стороны трапеции делятся каждая на отрезки от вершин ( точки вне окружности) до точки касания.
Отрезки касательных, проведенные из одной точки, равны.
Меньшее основание от вершин тупых углов до точки касания по 8 см, и равно 8+8=16см.
Большее основание от вершин острых углов равно 18+18=36 см
Полусумма оснований равна
(36+16):2=26 см
Теперь нужно найти высоту трапеции.
Опустим из вершины тупого угла высоту ВН на АД.
Расстояние от угла большего основания равнобедренной трапеции до основания высоты, опущенной из вершины меньшего основания, равно полуразности оснований.
АН=(36-16):2=10 см
Высоту ВН найдем по теорем Пифагора:
ВН² =АВ²-АН²
ВН² =(8+18)²-10²=
ВН=24 см
S= ВН ∙(АД+ВС):2
S= 24 ∙26= 624 см²
ответ:7) АСД=90° и АСВ=90° 13) АСВ=30° 11) ∠2=30° и ∠ 1=90°
Объяснение:7) В ΔАДС М- центр описанной окружности ⇒ АД= диаметр этой окружности и Δ АДС- прямоугольный,т.к. ∠АСД-вписанный и опирается на диаметр ⇒ ∠АСД=90°.
ДС- наклонная к пл. АВС, ДС ⊥ АС, АС⊂пл.АВС,ВС-проекция ДС на пл. АВС. По теореме о 3-х перпендикулярах ВС⊥АС ⇒ ∠ АСВ=90° ответ: 90° и 90°
13) АД, СД и ВД-наклонные к пл.АВС, АД=СД=ВД по условию.
АО,ВО и СО - проекции этих наклонных на пл. АВС ⇒ АО=ВО=СО
О-центр описанной окружности около ΔАВС. ∠АОВ=60° и является центральным углом ⇒ ∪АВ =60°; ∠ АСВ -вписанный угол, опирающийся на ∪АВ ⇒ ∠АСВ=30° по свойству вписанного угла. ответ: 30°
11) В условии задачи есть опечатка: АД=2ВД вместо АМ=2ВД.
В ΔАВД ВД⊥пл.АВС и АВ⊂пл.АВС ⇒∠ДВА=90°, АД=2ВД⇒ ∠ДАВ= ∠2= 30° по свойству катета напротив угла 30° .
ДС-наклонная к пл.АВС, АС ⊂ пл.АВС и ∠АСД=90° по условию, ВС- проекция ДС на пл.АВС . По теореме о 3-х перпендикулярах ДС ⊥АС
и ∠ДСА= ∠ 1=90°. ответ: ∠1=90° и ∠2=30°