3.В параллелограмме сумма 2-х соседних углов= 180 гр.Делаем вывод,что нам дана сумма противоположных углов.150/2=75 гр один угол.По указанному выше свойству 180-75=105 гр-второй угол.ответ:75,75,105,105 4.Это параллелограммы,т.к. АB||KL,АК||BL и KL||CD ,KD||LC.Противоположные стороны попарно параллельны,это признак параллелограмма. 3.Пусть один из углов=х,тогда другой будет 3х. х+3х=180.4х=180 х=45,3х=135.ответ:45,45,135,135 4.В данном четырехугольнике диагонали равны диаметру,значит,равны между собой.Точкой пересечения делятся пополам.Это признак прямоугольника. 3.Пусть одна из сторон х.Периметр=2х+2*8=36 2х=20 х=10 ответ:8,10,10 4.В данном четырехугольнике диагонали равны диаметру и равны между собой,пересекаются под прямым углом и точкой пересечения делятся пополам.Это признак квадрата.
Правильная треугольная призма вписана в шар. основания призмы вписаны в окружности - сечения шара плоскостями призмы. 1. найдем радиус сечения. правильный треугольник со стороной а=2 вписан в окружность радиуса r. радиус описанной около правильного треугольника окружности: r=a/√3 r=2/√3.
2. рассмотрим прямоугольный треугольник: катет - (1/2) высоты призмы - расстояние от центра шара до плоскости основания призмы, до центра правильного треугольника катет - радиус описанной около правильного треугольника окружности r=2/√3 гипотенуза - радиус шара R=7/√3 по теореме Пифагора: R²=r²+(H/2)² (7/√3)²=(2/√3)²+H²/4
4.Это параллелограммы,т.к. АB||KL,АК||BL и KL||CD ,KD||LC.Противоположные стороны попарно параллельны,это признак параллелограмма.
3.Пусть один из углов=х,тогда другой будет 3х. х+3х=180.4х=180 х=45,3х=135.ответ:45,45,135,135
4.В данном четырехугольнике диагонали равны диаметру,значит,равны между собой.Точкой пересечения делятся пополам.Это признак прямоугольника.
3.Пусть одна из сторон х.Периметр=2х+2*8=36 2х=20 х=10
ответ:8,10,10
4.В данном четырехугольнике диагонали равны диаметру и равны между собой,пересекаются под прямым углом и точкой пересечения делятся пополам.Это признак квадрата.
основания призмы вписаны в окружности - сечения шара плоскостями призмы.
1. найдем радиус сечения. правильный треугольник со стороной а=2 вписан в окружность радиуса r. радиус описанной около правильного треугольника окружности: r=a/√3
r=2/√3.
2. рассмотрим прямоугольный треугольник:
катет - (1/2) высоты призмы - расстояние от центра шара до плоскости основания призмы, до центра правильного треугольника
катет - радиус описанной около правильного треугольника окружности r=2/√3
гипотенуза - радиус шара R=7/√3
по теореме Пифагора: R²=r²+(H/2)²
(7/√3)²=(2/√3)²+H²/4
H²=60
H=2√15