Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Объяснение:
12) Рассмотрим треугольник MNP.
MK - высота, MK = KN => Треугольник МNP - равнобед. (свойство высоты равнобедренного треугольника)
Угол М = угол N = 60 градусов (углы при основании)
Угол MPN = 180 - угол М - угол N = 180 - 60 - 60 = 60 градусов
Угол KPN = угол КРМ = 0,5 * 60 (угол MPN) = 30 градусов (КР - биссектриса, медиана, высота)
13) Рассмотрим треугольник SKP.
SK = KP => треугольник SKP - равнобед.
Угол SKP = Угол SKT * 2 = 25 * 2 = 50 градусов (KT - высота проведённая к основанию => KT - медиана, биссектриса)
Угол P = (180 - угол SKT):2 = (180 - 50):2 = 65 градусов
Угол P = угол S = 65 градусов (углы при основании)