ЗАДАЧА 1 1) найдем сторону правильного треугольника: а=Р/3=45/3=15 2) Зная сторону, найдем радиус окружности по формуле: R=(a√3)/3 Получим: R=(15√3)/3=5√3 3) Если правильный четырехугольник вписан в окружность, то радиус этой окружности равен половине диагонали: R=d/2, Подставим найденное значение R: 5√3=d/2. Отсюда d=10√3 4) Зная диагональ, найдем сторону правильного четырехугольника: а=d/√2 Получим: a=(10√3)/√2=5√6
ЗАДАЧА 2 1) Если площадь квадрата равна 72, то его сторона равна √72=6√2 2) Зная сторону квадрата, найдем радиус вписанной в него окружности: r=a/2=(6√2)/2=3√2 3) Зная радиус, найдем площадь круга: S=πR²=π(3√2)²=36π
ЗАДАЧА 3 Длину дуги ищем по формуле: l=(πRα)/180 Получим: l=(8π·150)/180=(20π)/3
1) найдем сторону правильного треугольника: а=Р/3=45/3=15
2) Зная сторону, найдем радиус окружности по формуле: R=(a√3)/3
Получим: R=(15√3)/3=5√3
3) Если правильный четырехугольник вписан в окружность, то радиус этой окружности равен половине диагонали: R=d/2, Подставим найденное значение R: 5√3=d/2. Отсюда d=10√3
4) Зная диагональ, найдем сторону правильного четырехугольника: а=d/√2
Получим: a=(10√3)/√2=5√6
ЗАДАЧА 2
1) Если площадь квадрата равна 72, то его сторона равна √72=6√2
2) Зная сторону квадрата, найдем радиус вписанной в него окружности: r=a/2=(6√2)/2=3√2
3) Зная радиус, найдем площадь круга: S=πR²=π(3√2)²=36π
ЗАДАЧА 3
Длину дуги ищем по формуле: l=(πRα)/180
Получим: l=(8π·150)/180=(20π)/3
Задачу можно решить несколькими Один из них:
Т.к. ∆ АВС равнобедренный,∠А=∠С=(180°-угол В):2=(180°-120°):2=30°
Проведем высоту из вершины С треугольника АВС,
Т.к. угол АВС тупой, высота будет расположена вне треугольника и пересечёт продолжение АВ в т.Н.
∆ АНС прямоугольный с острым углом А=30°. Катет СН противолежит углу 30° и равен половине АС.
СН=12:2=6 см.
Угол НВС смежный углу АВС и равен 180°-120°=60°. ⇒
Боковая сторона ВС=НС:sin60°=6:√3/2=4√3 см
(Тот же результат получится. если применить
1)т.Пифагора
2)т.косинусов
3)т.синусов.