Так как по условию АМ = МС, то абсцисса точки С находится как точка пересечения окружности с центром в точке М радиусом АМ с прямой у = 6. Длина отрезка АМ = √(3-(6))²+(-1+3)²) = √(81+4) = √85. Составляем уравнение окружности (х-3)²+(у+1)² = 85. Ордината точки нам известна у = 6, подставляем её в уравнение и находим неизвестную величину р = х: х² - 6х + 9 + (6 + 1)² = 85. Получаем квадратное уравнение х² - 6х + 9 -27 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*(-27)=36-4*(-27)=36-(-4*27)=36-(-108)=36+108=144; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√144-(-6))/(2*1)=(12-(-6))/2=(12+6)/2=18/2=9; x_2=(-√144-(-6))/(2*1)=(-12-(-6))/2=(-12+6)/2=-6/2=-3. Это и есть 2 значения параметра р: р₁ = 9, р₂ = -3.
В основании пирамиды лежит квадрат.Смотрим Δ, в котором катет - высота пирамиды, гипотенуза боковое ребро и второй катет - это половина диагонали квадрата . Ищем эту половину по т. Пифагора. х² = 220² - 150² = (220 -150)(220 + 150) = 50·370= 18500 Диагонали квадрата делят его на4 прямоугольных равных Δ. рассмотрим один. В нём гипотенуза= стороне квадрата и катеты - это половинки диагоналей. По т. Пифагора у² = х² +х² у² = 18500 + 18500 = 37000 Площадь основания = у² = 37000
Длина отрезка АМ = √(3-(6))²+(-1+3)²) = √(81+4) = √85.
Составляем уравнение окружности (х-3)²+(у+1)² = 85.
Ордината точки нам известна у = 6, подставляем её в уравнение и находим неизвестную величину р = х:
х² - 6х + 9 + (6 + 1)² = 85.
Получаем квадратное уравнение х² - 6х + 9 -27 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*(-27)=36-4*(-27)=36-(-4*27)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√144-(-6))/(2*1)=(12-(-6))/2=(12+6)/2=18/2=9;
x_2=(-√144-(-6))/(2*1)=(-12-(-6))/2=(-12+6)/2=-6/2=-3.
Это и есть 2 значения параметра р:
р₁ = 9,
р₂ = -3.
х² = 220² - 150² = (220 -150)(220 + 150) = 50·370= 18500
Диагонали квадрата делят его на4 прямоугольных равных Δ. рассмотрим один. В нём гипотенуза= стороне квадрата и катеты - это половинки диагоналей.
По т. Пифагора у² = х² +х²
у² = 18500 + 18500 = 37000
Площадь основания = у² = 37000