Найдите координаты точки, лежащей в плоскости xoy и равноудаленной от точек A(0;1;0), B(-1;0;1), C(0;-1;0). Решаем как частный случай Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||, т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * * MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔ √(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S. Общий случай три уравнения с тремя переменными M(x ; y ; z) Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz) ⇒ BA =BC.
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
Решаем как частный случай
Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||,
т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * *
MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔
√(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S.
Общий случай три уравнения с тремя переменными M(x ; y ; z)
Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz)
⇒ BA =BC.