Стороны треугольника АВС вдвое больше сторон треугольника, составленного из его средних линий. ВС=6 АС=6√3 АВ=12 То, что СВ вдвое меньше АВ, предполагает, что треугольник АВС может быть прямоугольным. Проверим по т. косинусов. АВ²=ВС²+АС²-2АС*ВС*cos(∠С) 144=36+108-36√3*cos(∠С) 0=-36√3*cos(∠С) cos(∠С)=0:-36√3=0 сos (90°) = cos (π/2) = 0 Угол С=90° Острые углы можно уже не вычислять. sin A=6:12=1/2 Угол А=30°, следовательно, угол В=60° Углы треугольника АВС равны 90°, 60°, 30° Радиус описанной окружности равен половине АВ и равен 6.
А) Высота (биссектриса, медиана) в равностороннем треугольнике, разбивает его на два равных прямоугольных треугольника с гипотенузой 6 см и катетом 3 см. По т. Пифагора h=корень(36-9)=корень(27)
а) Высота (биссектриса, медиана) в равностороннем треугольнике, разбивает его на два равных прямоугольных треугольника х (см) - катет 2х (см) -гипотенуза (против угла 30 град, лежит катет=половине гипотенузы) 4 (см) - второй катет По т. Пифагора х^2+16=4x^2 3x^2=16 x=корень(16/3)=4корень(1/3) 2x=8корень(1/3) (см)- сторона равностороннего треугольника
ВС=6
АС=6√3
АВ=12
То, что СВ вдвое меньше АВ, предполагает, что треугольник АВС может быть прямоугольным.
Проверим по т. косинусов.
АВ²=ВС²+АС²-2АС*ВС*cos(∠С)
144=36+108-36√3*cos(∠С)
0=-36√3*cos(∠С)
cos(∠С)=0:-36√3=0
сos (90°) = cos (π/2) = 0
Угол С=90°
Острые углы можно уже не вычислять.
sin A=6:12=1/2
Угол А=30°, следовательно, угол В=60°
Углы треугольника АВС равны 90°, 60°, 30°
Радиус описанной окружности равен половине АВ и равен 6.
По т. Пифагора
h=корень(36-9)=корень(27)
а) Высота (биссектриса, медиана) в равностороннем треугольнике, разбивает его на два равных прямоугольных треугольника
х (см) - катет
2х (см) -гипотенуза (против угла 30 град, лежит катет=половине гипотенузы)
4 (см) - второй катет
По т. Пифагора
х^2+16=4x^2
3x^2=16
x=корень(16/3)=4корень(1/3)
2x=8корень(1/3) (см)- сторона равностороннего треугольника