меньшая диагональ ромба равна а. это как раз диагональ проведенная из вершины тупого угла и образует с высотой угол 30 град. высота - это перпендикуляр к противоположно стороне ромба (т.е.) образует угол 90 град. т.к. сумма углов треугольника равна 180, то угол между короткой диагональю и стороной ромба равен 60 град. получается, что короткая диагональ делит ромб на 2 равносторонних треугольника и диагональ равна стороне ромба, т.е. а. таким образом периметр равен 4а
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
периметр ромба равен 4а.
решение.
меньшая диагональ ромба равна а. это как раз диагональ проведенная из вершины тупого угла и образует с высотой угол 30 град. высота - это перпендикуляр к противоположно стороне ромба (т.е.) образует угол 90 град. т.к. сумма углов треугольника равна 180, то угол между короткой диагональю и стороной ромба равен 60 град. получается, что короткая диагональ делит ромб на 2 равносторонних треугольника и диагональ равна стороне ромба, т.е. а. таким образом периметр равен 4а