Площади подобных многоугольников относятся как квадраты их соответственных сторон.Пусть S1- площадь меньшего многоугольника, а S2 - большего. Пусть Ai - i-я сторона меньшего многоугольника (i=1,,n), а Bi - сторона большего многоугольника. Тогда Ai/Bi=√(S1/S2)=√(4/9)=2/3. Но тогда периметр меньшего многоугольника P1=∑Ai=2/3*∑Bi=P2, где P2- периметр большего многоугольника. По условию, P2=P1+10. А так как P1=2/3*P2, то получаем уравнение P2=2/3*P2+10, откуда P2/3=10 см и P2=30 см. А тогда P1=2/3*30=20 см. ответ: 20 см и 30 см.
Расстояние от вершины треугольника В до точки касания Н с вписанной в треугольник окружностью равно разности полупериметра треугольника и противоположной вершине В стороны (теорема) или в нашем случае
ВН = 40/2 -АС = 20 - 2*DC. (1) (так как в равнобедренном треугольнике высота является и медианой)
В прямоугольном (радиус ОН перпендикулярен стороне ВС в точке касания Н) треугольнике ВОН ОН = OD =(2/5)*BD (дано).
АС = 16 ед.
Объяснение:
Расстояние от вершины треугольника В до точки касания Н с вписанной в треугольник окружностью равно разности полупериметра треугольника и противоположной вершине В стороны (теорема) или в нашем случае
ВН = 40/2 -АС = 20 - 2*DC. (1) (так как в равнобедренном треугольнике высота является и медианой)
В прямоугольном (радиус ОН перпендикулярен стороне ВС в точке касания Н) треугольнике ВОН ОН = OD =(2/5)*BD (дано).
ВО = BD - (2/5)*BD = (3/5)*BD и по Пифагору:
ВН = √(ВО²-ОН²) = √(9*ВО²/25-4*ВО²/25) = (√5/5)*BD.
Прямоугольные треугольники ВDC и ВНО подобны по общему острому углу. Из подобия: ВН/ОН=BD/DC. =>
DC = BD*OH/BH = BD*2*BD*5/(5*√5*BD) = (2/√5)*BD.
Из (1): (√5/5)*BD = 20 - (4/√5)*BD => BD*5/√5 = 20 =>
BD = 4√5 ед. Тогда
DC = (2/√5)*BD = (2/√5)*4√5 = 8 ед.
АС = 2*DC = 16 ед.