Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
Відповідь:
Пояснення:
2. MN є висотою і медіаною водночас → △CMD рівнобедренний і CM=DM та /_С=/_D
△NCM та △NDM подібні за двума сторонами та кутами між ними
Так як співвідношення сторін =1, то трикутники рівні
4. Якщо в △один з кутів 90°, то сума інших також лорівнює 90. Так як співвідношення кутів 1:2, то кути є 30° та 60°
Менший катет лежить напроти меншого кута, так як менший кут =30°, то катет вдвічі менший гіпотенузи.
З другої сторони різниця гіпотенузи і меншого катету=6.
Нехай х-менший катет, тоді 2х-х=6 →х=6
Гіпотенуза дорівнює 12