108см²
Объяснение:
Фигура квадрат
Формула нахождения периметра квадрата
Р=4*АВ.
Найдем из этой формулы сторону квадрата.
АВ=Р:4=48:4=12 см сторона квадрата.
Теперь найдем площадь квадрата.
Sавсd=AB²=12²=12*12=144см² площадь квадрата.
Квадрат разделен на 4 равных треугольника.
Найдем площадь одного из этих треугольников.
S∆AED=Saвсd:4=144:4=36см² площадь одного треугольника.
Площадь фигуры, которой нам нужно найти состоит из 3 треугольников, если площадь одного треугольника равна 36, то трёх таких треугольников будет.
SABECD=3*S∆AED=3*36=108см²
∟DBK = 60°
решение вопроса
+4
Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.
BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.
Розв'язання:
Нехай ∟ABE = ∟EBF = ∟FBC = х.
За аксіомою вимірюваиня кутів маємо:
∟ABC = ∟ABE + ∟EBF + ∟FBC.
Складемо i розв'яжемо рівняння:
х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.
За означениям бісектриси кута маємо:
∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.
За аксіомою вимірювання кутів маємо:
∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),
∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.
108см²
Объяснение:
Фигура квадрат
Формула нахождения периметра квадрата
Р=4*АВ.
Найдем из этой формулы сторону квадрата.
АВ=Р:4=48:4=12 см сторона квадрата.
Теперь найдем площадь квадрата.
Sавсd=AB²=12²=12*12=144см² площадь квадрата.
Квадрат разделен на 4 равных треугольника.
Найдем площадь одного из этих треугольников.
S∆AED=Saвсd:4=144:4=36см² площадь одного треугольника.
Площадь фигуры, которой нам нужно найти состоит из 3 треугольников, если площадь одного треугольника равна 36, то трёх таких треугольников будет.
SABECD=3*S∆AED=3*36=108см²
∟DBK = 60°
Объяснение:
решение вопроса
+4
Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.
BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.
Розв'язання:
Нехай ∟ABE = ∟EBF = ∟FBC = х.
За аксіомою вимірюваиня кутів маємо:
∟ABC = ∟ABE + ∟EBF + ∟FBC.
Складемо i розв'яжемо рівняння:
х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.
За означениям бісектриси кута маємо:
∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.
За аксіомою вимірювання кутів маємо:
∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),
∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.