Оч ! основание пирамиды - равнобедренный треугольник с основанием а и углом при вершине. все двугранные углы при ребрах основания равны β. найти объем пирамиды
1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
2. Пусть боковые стороны будут a=х и b=х-3.
Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние:
х²-10²=(х-3)²-5²,
х²-100=х²-6х+9-25,
х=14,
а=14 см, b=14-3=11 см, c=5+10=15 cм.
Р=14+11+15=40 см.
ответ: б) 40 см.
3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3.
АВ=4√3/√3=4 см.
Периметр ромба: Р=4АВ=16 см.
ответ: а) 16 см.
Пусть радиус самого большого полукруга R, тогда R = 126/2 = 63.
Пусть радиус среднего полукруга r₁, а радиус самого малого полукруга
r₂. Тогда r₂= 25.
r₁ = (126 - 2·25)/2 = (126 - 50)/2 = 76/2 = 38.
Пусть площадь большого полукруга S, среднего полукруга - S₁, малого полукруга S₂.
Тогда (по формуле площади круга, с учётом того, что у нас полукруги):
S = π·R²/2,
S₁ = π·r₁²/2,
S₂ = π·r₂²/2.
Тогда площадь заштрихованной области будет
= S - S₁ - S₂ = (π·R²/2) - (π·r₁²/2) - (π·r₂²/2) =
= π·( R² - r₁² - r₂²)/2 = π·( 63² - 38² - 25² )/2 = π·( 3969 - 1444 - 625)/2 =
= π·1900/2 = 950π.