Это верно для произвольного 4 угольника (трапеция частный случай):
Проведем диагональ x.
Запишем неравенство треугольника abx: a+b>x ;
Запишем неравенство треугольника cdx : c+x>d ;
Сложим эти неравенства почленно: a+b+c+x>x+d .
Откуда: a+b+c>d .
Таким образом , любая сторона четырехугольника меньше суммы трех других его сторон , что ,соответственно, справедливо и для трапеции.
Ну наверное самые любознательные спросят :,,А верно ли это для произвольного многоугольника?'' Таки да это так :) . Но вот как это доказать? Пусть эта задача останется вам.Дам небольшую подсказку : примените похожий метод как для 4 угольника ,используя метод математической индукции.
Угол С - прямой, угол А=30 град, АВ - гипотенуза, ВС - катет, лежащий напротив угла А=30 град. Найти ВС. Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2. S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.
Это верно для произвольного 4 угольника (трапеция частный случай):
Проведем диагональ x.
Запишем неравенство треугольника abx: a+b>x ;
Запишем неравенство треугольника cdx : c+x>d ;
Сложим эти неравенства почленно: a+b+c+x>x+d .
Откуда: a+b+c>d .
Таким образом , любая сторона четырехугольника меньше суммы трех других его сторон , что ,соответственно, справедливо и для трапеции.
Ну наверное самые любознательные спросят :,,А верно ли это для произвольного многоугольника?'' Таки да это так :) . Но вот как это доказать? Пусть эта задача останется вам.Дам небольшую подсказку : примените похожий метод как для 4 угольника ,используя метод математической индукции.
Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2.
S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.