очень надо, умоляю ) Задача 1. Знайдіть довжину меншої з двох дуг кола радіусом R=3 м, якщо один iз відповідних їм центральних кутів удвічі більший ніж другий.
Задача 2. Дві точки ділять коло радіусом 18 см на дві дуги. Знайдіть довжину кожної дуги, якщо градусна міра однієї з них на 50° більша за градусну міру другої.
ответ:Рассмотрим треугольники АМВ и СМД
АМ=МС-медиана делит сторону на которую опущена на две равные части
МД-общая сторона
В равнобедренном треугольнике медиана,если она опущена из вершины на основание,является одновременно и высотой,а высота-перпендикуляр и образует прямые углы
Угол АМД равен углу ДМС и каждый из них равен 90 градусов
Исходя из вышеизложенного мы можем утверждать,что треугольник АДМ равен треугольнику ДМС по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
Объяснение:
ответ: 1,6 см; 3,6 см; 5,2 см.
Объяснение:
Назовём треугольник АВС; угол С=90°, АС:СВ=3:2, АН=ВН+2.
Примем ВН=х, АН=х+2.
Каждый катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу: ⇒
АС²=АВ•АН=(х+х+2)•(х+2)=2•(х+1)•(х+2)
ВС²=АВ•ВН=(х+х+2)•х=2•(х+1)•х
По условию АС:ВС=3:2 => АС²:ВС²=3²:2²= 9:4
Подставим найденные выше значения катетов в пропорцию:
2•(х+1)•(х+2):2•(х+1)•х=9:4⇒
(х+2):х=9:4
5х=8 ⇒
BH=х=1,6
AН=1,6+2=3,6 см
АВ=2х+2=5,2 см
АС=√(5,2•3,6)=6√52
BC=√(5,5•1,6)=4√52