Очень нужна . 1. Плоскости треугольников ABC и А1В1С1 параллельны и выполняется отношение РС1:С1С=3:5. Известно что преиметр . РАВС = 48 см .Найти периметр треугольника А1В1С1
2.m =(1;3;4) и n = (1;0; 2) б.Найти длину вектора a = 2n+ m
3.Ребро куба ABCDA1B1C1D1 равно 1. Найти тангенс угла между
DВ1 и плоскостью ABC .
4. Дано А(3;0;5), В(0;6;2) и С(6;2;8) . Найти медиану АК треугольникаАВС
5.Расстояние от точки C до точки A(5; 8;0) равно расстоянию до точки B (3; 4;0) .
Найти координаты точки С ,лежащей на оси OX
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².
• В основаниях правильной треугольной призмы лежат правильные треугольники ( тр. АВС = тр. А1В1С1 - равносторонние ). У прямой призмы рёбра равны, перпендикулярны основаниям, параллельны друг другу.
• В сечении правильной треугольной призмы находится равнобедренная трапеция ( DP || KL , KD = LP ).
• DP - средняя линия тр. А1В1С1
DP = ( 1/2 ) • A1C1 = ( 1/2 ) • 15,7 = 15,7 / 2 см.
KL = A1C1 = 15,7 см
• Проведём в тр. А1В1С1 высоту В1Н на А1С1.
В1Н = А1С1•\/3 / 2 = ( 15,7 • \/3 ) / 2 см
НN = ( 1/2 ) • B1H = ( 15,7 • \/3 ) / 4 см
• Рассмотрим тр. МНN (угол МНN = 90°):
cos MNH = HN / MN
cos 30° = ( 15,7 • \/3 ) / 4 : MN
MN = 15,7 / 2 см
• Площадь трапеции KDPL равна:
S = ( 1/2 ) • ( DP + KL ) • MN = ( 1/2 ) • ( 15,7 / 2 + 15,7 ) • 15,7 / 2 = ( 47,1 • 15,7 ) / 8 = 92,43375 см^2
ОТВЕТ: 92,43375 см^2
__________________________