Чтобы ответить на вопрос задачи, нужно найти длину основания сечения и его высоту. По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра. Она удалена от оси на 8 см. Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН. Перпендикуляр к хорде из центра окружности делит ее пополам. ВН=НС Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8. Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора) Тогда ВС=2*6=12 см АВ=ВС=12 см ⇒ Ѕ АВСД=12²=144 см²
По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра.
Она удалена от оси на 8 см.
Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН.
Перпендикуляр к хорде из центра окружности делит ее пополам.
ВН=НС
Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8.
Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора)
Тогда ВС=2*6=12 см
АВ=ВС=12 см ⇒
Ѕ АВСД=12²=144 см²
Дано уравнение параболы 5x^2-7x-2y-4=0
Выделяем полные квадраты:
5(x²-2·(7/10)x + (7/10)²) -5·(7/10)² = 5(x-(7/10))²- (49/20)
Преобразуем исходное уравнение:
Получили уравнение параболы:
(x - x0)² = 2p(y - y0) .
(x-(7/10))² = 2·(1/5)(y - (-129/40)) .
Ветви параболы направлены вверх (p>0), вершина расположена в точке (x0, y0), то есть в точке ((7/10); (-129/40)) .
Параметр p = 1/5.
Координаты фокуса: (xo; yo+(p/2)) = (7/10); (-125/40)).
Уравнение директрисы: y = y0 - p/2
y = (-129/40) - (1/10) = (-133/40 ).
Параметры кривой более подробно даны во вложении.