Высота призмы (ее боковое ребро) равно а, тк лежит против угла в 30 гр в прямоугольном треугольнике. Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3) Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2 Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2 Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2 sqrt - квадратный корень, ^ - возведение в квадрат.
Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3)
Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр
Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2
Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2
Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2
sqrt - квадратный корень, ^ - возведение в квадрат.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений 5²+9²+13²=25+81+169=275
Диагональ прямоугольного параллелепипеда равна √275=5√11
Если в основании 5 и 9, диагональ основания равна √(25+81)=√106, высота 13, тогда площадь диагонального сечения 13√106
Если за основание взять прямоугольник со сторонами 5 и 13, то диагональ основания √(25+169)=√194, искомая площадь 9√194,
Если за основание принять прямоугольник со сторонами 9 и 13, то диагональ основания √(81+169)=√250=5√10, и искомая площадь
5*5√10=25√10